Code:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
///https://www.geeksforgeeks.org/program-for-nth-fibonacci-number/ | |
#include <bits/stdc++.h> | |
using namespace std; | |
#define INF 1<<30 | |
#define endl '\n' | |
#define maxn 100005 | |
#define tc printf("Case %d: ", cs) | |
#define tcn printf("Case %d:\n", cs); | |
#define FASTIO ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0); | |
typedef long long ll; | |
const double PI = acos(-1.0); | |
#define dbg(x) cerr << #x << " = " << x << endl; | |
#define dbg2(x, y) cerr << #x << " = " << x << ", " << #y << " = " << y << endl; | |
#define dbg3(x, y, z) cerr << #x << " = " << x << ", " << #y << " = " << y << ", " << #z << " = " << z << endl; | |
#define dbg4(w,x, y, z) cerr << #w << " = " << w << ", " <<#x << " = " << x << ", " << #y << " = " << y << ", " << #z << " = " << z << endl; | |
int fib0(int n) | |
{ | |
if (n <= 1) return n; | |
return fib0(n - 1) + fib0(n - 2); | |
} | |
int fib1(int n) | |
{ | |
int f[n + 2]; | |
f[0] = 0; | |
f[1] = 1; | |
for (int i = 2; i <= n; i++) { | |
f[i] = f[i - 1] + f[i - 2]; | |
} | |
return f[n]; | |
} | |
// O(n) | |
int fib2(int n) | |
{ | |
int a = 0, b = 1; | |
if (n == 0) return a; | |
for (int i = 2; i <= n; i++) { | |
int c = a + b; | |
a = b; | |
b = c; | |
} | |
return b; | |
} | |
void multiply(int F[2][2], int M[2][2]) | |
{ | |
int x = F[0][0] * M[0][0] + F[0][1] * M[1][0]; | |
int y = F[0][0] * M[0][1] + F[0][1] * M[1][1]; | |
int z = F[1][0] * M[0][0] + F[1][1] * M[1][0]; | |
int w = F[1][0] * M[0][1] + F[1][1] * M[1][1]; | |
F[0][0] = x; | |
F[0][1] = y; | |
F[1][0] = z; | |
F[1][1] = w; | |
} | |
void power(int F[2][2], int n) | |
{ | |
int M[2][2] = {{1, 1}, {1, 0}}; | |
// n - 1 times multiply the matrix | |
for (int i = 2; i <= n; i++) { | |
multiply(F, M); | |
} | |
} | |
void powerOptimize(int F[2][2], int n) | |
{ | |
if (n == 0 || n == 1) return; | |
int M[2][2] = {{1, 1}, {1, 0}}; | |
powerOptimize(F, n / 2); | |
multiply(F, F); | |
if (n & 1) multiply(F, M); | |
} | |
/// O(n) | |
int fib3(int n) | |
{ | |
int F[2][2] = {{1, 1}, {1, 0}}; | |
if (n == 0) return 0; | |
power(F, n - 1); | |
return F[0][0]; | |
} | |
/// O(logn) | |
int fib4(int n) | |
{ | |
int F[2][2] = {{1, 1}, {1, 0}}; | |
if (n == 0) return 0; | |
power(F, n - 1); | |
return F[0][0]; | |
} | |
int f[1000]; | |
/// O(logn) | |
int fib5(int n) | |
{ | |
if (n == 0) return 0; | |
if (n == 1 || n == 2) | |
return (f[n] = 1); | |
// if fib(n) is already computed | |
if (f[n]) return f[n]; | |
int k = (n & 1) ? (n + 1) / 2 : n / 2; | |
f[n] = (n & 1) ? (fib5(k) * fib5(k) + fib5(k - 1) * fib5(k - 1)) | |
: (2 * fib5(k - 1) + fib5(k)) * fib5(k); | |
return f[n]; | |
} | |
/// O(1) | |
int fib6(int n) | |
{ | |
double phi = (1 + sqrt(5)) / 2; | |
return round(pow(phi, n) / sqrt(5)); | |
} | |
int main() | |
{ | |
FASTIO | |
///* | |
//double start_time = clock(); | |
#ifndef ONLINE_JUDGE | |
freopen("in.txt", "r", stdin); | |
freopen("out.txt", "w", stdout); | |
freopen("error.txt", "w", stderr); | |
#endif | |
//*/ | |
int n = 16; | |
cout << fib0(n) << endl; | |
cout << fib1(n) << endl; | |
cout << fib2(n) << endl; | |
cout << fib3(n) << endl; | |
cout << fib4(n) << endl; | |
cout << fib5(n) << endl; | |
cout << fib6(n) << endl; | |
//double end_time = clock(); | |
//printf( "Time = %lf ms\n", ( (end_time - start_time) / CLOCKS_PER_SEC)*1000); | |
return 0; | |
} |
No comments:
Post a Comment