Resource
Fibonacci no in O(log N) time
Solving the Fibonacci Sequence with Matrix Exponentiation
An amazing way to calculate 10^18-th fibonacci number using 25 lines of code.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
///https://www.spoj.com/problems/MAIN74/ | |
#include <bits/stdc++.h> | |
using namespace std; | |
#define INF 1<<30 | |
#define maxn 100005 | |
#define FASTIO ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0); | |
typedef long long ll; | |
const ll Mod = 1000000007; | |
void multiply(ll F[2][2], ll M[2][2]) | |
{ | |
ll x = ((F[0][0] * M[0][0]) % Mod + (F[0][1] * M[1][0]) % Mod ) % Mod; | |
ll y = ((F[0][0] * M[0][1]) % Mod + (F[0][1] * M[1][1]) % Mod ) % Mod; | |
ll z = ((F[1][0] * M[0][0]) % Mod + (F[1][1] * M[1][0]) % Mod ) % Mod; | |
ll w = ((F[1][0] * M[0][1]) % Mod + (F[1][1] * M[1][1]) % Mod ) % Mod; | |
F[0][0] = x; | |
F[0][1] = y; | |
F[1][0] = z; | |
F[1][1] = w; | |
} | |
void power(ll F[2][2], ll n) | |
{ | |
if(n == 0 || n == 1) return; | |
ll M[2][2] = {{1, 1}, {1, 0}}; | |
power(F, n/2); | |
multiply(F, F); | |
if(n & 1) | |
multiply(F, M); | |
} | |
ll fib(ll n) | |
{ | |
ll F[2][2] = {{1, 1}, {1, 0}}; | |
if(n == 0) return 0; | |
power(F, n - 1); | |
return F[0][0]; | |
} | |
int main() | |
{ | |
FASTIO | |
///* | |
//double start_time = clock(); | |
#ifndef ONLINE_JUDGE | |
freopen("in.txt", "r", stdin); | |
freopen("out.txt", "w", stdout); | |
freopen("error.txt", "w", stderr); | |
#endif //*/ | |
int t; | |
cin >> t; | |
while(t--){ | |
ll n; | |
cin >> n; | |
if(n == 0) cout << "0" << endl; | |
else if(n == 1) cout << 2 << endl; | |
else cout << (fib(n+3)) % Mod<<endl; | |
} | |
//double end_time = clock(); | |
//printf( "Time = %lf ms\n", ( (end_time - start_time) / CLOCKS_PER_SEC)*1000); | |
return 0; | |
} |
No comments:
Post a Comment