Problem Link: Round Trip
Resources:
Checking a graph for acyclicity and finding a cycle in O(M)
Detect cycle in an undirected graph using BFS
Detect cycle in an undirected graph
Implementation:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
///https://cses.fi/problemset/task/1669/ | |
#include <bits/stdc++.h> | |
using namespace std; | |
#define INF 1<<30 | |
#define endl '\n' | |
#define maxn 1000005 | |
#define FASTIO ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0); | |
typedef long long ll; | |
const double PI = acos(-1.0); | |
const ll mod = 1e9 + 7; | |
inline void normal(ll &a) { a %= mod; (a < 0) && (a += mod); } | |
inline ll modMul(ll a, ll b) { a %= mod, b %= mod; normal(a), normal(b); return (a * b) % mod; } | |
inline ll modAdd(ll a, ll b) { a %= mod, b %= mod; normal(a), normal(b); return (a + b) % mod; } | |
inline ll modSub(ll a, ll b) { a %= mod, b %= mod; normal(a), normal(b); a -= b; normal(a); return a; } | |
inline ll modPow(ll b, ll p) { ll r = 1; while (p) { if (p & 1) r = modMul(r, b); b = modMul(b, b); p >>= 1; } return r; } | |
inline ll modInverse(ll a) { return modPow(a, mod - 2); } | |
inline ll modDiv(ll a, ll b) { return modMul(a, modInverse(b)); } | |
///** | |
template < typename F, typename S > | |
ostream& operator << ( ostream& os, const pair< F, S > & p ) { | |
return os << "(" << p.first << ", " << p.second << ")"; | |
} | |
template < typename T > | |
ostream &operator << ( ostream & os, const vector< T > &v ) { | |
os << "{"; | |
for (auto it = v.begin(); it != v.end(); ++it) { | |
if ( it != v.begin() ) os << ", "; | |
os << *it; | |
} | |
return os << "}"; | |
} | |
template < typename T > | |
ostream &operator << ( ostream & os, const set< T > &v ) { | |
os << "["; | |
for (auto it = v.begin(); it != v.end(); ++it) { | |
if ( it != v.begin()) os << ", "; | |
os << *it; | |
} | |
return os << "]"; | |
} | |
template < typename F, typename S > | |
ostream &operator << ( ostream & os, const map< F, S > &v ) { | |
os << "["; | |
for (auto it = v.begin(); it != v.end(); ++it) { | |
if ( it != v.begin() ) os << ", "; | |
os << it -> first << " = " << it -> second ; | |
} | |
return os << "]"; | |
} | |
#define dbg(args...) do {cerr << #args << " : "; faltu(args); } while(0) | |
clock_t tStart = clock(); | |
#define timeStamp dbg("Execution Time: ", (double)(clock() - tStart)/CLOCKS_PER_SEC) | |
void faltu () { cerr << endl; } | |
template <typename T> | |
void faltu( T a[], int n ) { | |
for (int i = 0; i < n; ++i) cerr << a[i] << ' '; | |
cerr << endl; | |
} | |
template <typename T, typename ... hello> | |
void faltu( T arg, const hello &... rest) { cerr << arg << ' '; faltu(rest...); } | |
// Program showing a policy-based data structure. | |
#include <ext/pb_ds/assoc_container.hpp> // Common file | |
#include <ext/pb_ds/tree_policy.hpp> | |
#include <functional> // for less | |
#include <iostream> | |
using namespace __gnu_pbds; | |
using namespace std; | |
// GNU link : https://goo.gl/WVDL6g | |
typedef tree<int, null_type, less_equal<int>, rb_tree_tag, | |
tree_order_statistics_node_update> | |
new_data_set; | |
// find_by_order(k) – ফাংশনটি kth ordered element এর একটা পয়েন্টার রিটার্ন করে। অর্থাৎ তুমি চাইলেই kth ইন্ডেক্সে কি আছে, সেটা জেনে ফেলতে পারছো! | |
// order_of_key(x) – ফাংশনটি x এলিমেন্টটা কোন পজিশনে আছে সেটা বলে দেয়। | |
//*//**___________________________________________________**/ | |
const int N = 1e5 + 5; | |
int n; | |
vector<int> graph[N]; | |
vector<int> color; | |
vector<int> parent; | |
int cycle_start, cycle_end; | |
bool dfs(int u, int p = -1) | |
{ | |
//dbg(u); | |
color[u] = 1; | |
for (auto v : graph[u]) { | |
if (v == p) continue; | |
if (color[v] == 0) { | |
parent[v] = u; | |
if (dfs(v, u)) return true; | |
} | |
else if (color[v] == 1) { | |
cycle_start = v; | |
cycle_end = u; | |
return true; | |
} | |
} | |
color[u] = 2; | |
return false; | |
} | |
void find_cycle() { | |
color.assign(n, 0); | |
parent.assign(n, -1); | |
cycle_start = -1; | |
for (int i = 0; i < n; i++) { | |
if (color[i] == 0 && dfs(i)) { | |
break; | |
} | |
} | |
if (cycle_start == -1) { | |
cout << "IMPOSSIBLE"; | |
} | |
else { | |
// dbg(cycle_start, cycle_end); | |
// dbg(parent[1], parent[3], parent[5]); | |
vector<int> cycle; | |
cycle.push_back(cycle_start); | |
for (int v = cycle_end; v != cycle_start; v = parent[v]) { | |
// dbg(v, parent[v]); | |
cycle.push_back(v); | |
} | |
cycle.push_back(cycle_start); | |
reverse(cycle.begin(), cycle.end()); | |
cout << (int)cycle.size() << endl; | |
for (auto x : cycle) cout << x + 1 << " "; | |
cout << endl; | |
} | |
} | |
int main() | |
{ | |
FASTIO | |
/* | |
#ifndef ONLINE_JUDGE | |
freopen("in.txt", "r", stdin); | |
freopen("out.txt", "w", stdout); | |
freopen("error.txt", "w", stderr); | |
#endif | |
//*/ | |
int m; | |
cin >> n >> m; | |
for (int i = 0; i < m; i++) { | |
int u, v; | |
cin >> u >> v; | |
--u; | |
--v; | |
graph[u].push_back(v); | |
graph[v].push_back(u); | |
} | |
find_cycle(); | |
return 0; | |
} |
Great tutorial. Thanks for share.
ReplyDeletesdfs
ReplyDelete