1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
| #include<bits/stdc++.h>
using namespace std;
#define MAX 46656
#define LMT 216
#define LEN 4830
#define RNG 100032
unsigned base[MAX/64], segment[RNG/64], primes[LEN];
#define sq(x) ((x)*(x));
#define mset(x,v) memset(x,v,sizeof(x))
#define chkC(x,n) (x[n>>6]&(1<<((n>>1)&31)))
#define setC(x,n) (x[n>>6]|=(1<<((n>>1)&31)))
typedef long long ll;
//Generates all the necessary prime numbers and marks them in base.
void seive()
{
unsigned i,j,k;
for(i = 3; i < LMT; i += 2)
if(!chkC(base, i))
for(j = (i * i), k = (i << 1); j < MAX; j += k)
setC(base, j);
for(i = 3, j = 0; i < MAX; i += 2)
if(!chkC(base, i))
primes[j++] = i;
}
// Returns the prime-count within range [a,b] and marks them in sement.
int segmentedSeive(int a, int b)
{
unsigned i,j,k, cnt = (a <= 2 && 2 <= b) ? 1 : 0;
if(b < 2) return 0;
if(a < 3) a = 3;
if(a%2 == 0)a++;
mset(segment,0);
for(i = 0; ( primes[i] * primes[i] ) <= b; i++){
j = primes[i] * ((a + primes[i] - 1) / primes[i]);
if(j%2 == 0) j += primes[i];
for(k = (primes[i] << 1); j <= b; j += k)
if(j != primes[i])
setC(segment, (j-a));
}
for(i = 0; i <= (b - a); i += 2)
if(!chkC(segment, i)){
cnt++;
}
return cnt;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
double start_time = clock();
seive();
int L,R;
cin >> L >> R;
cout << segmentedSeive(L,R)<<endl;
return 0;
double end_time = clock();
// printf( "Time = %lf ms\n", ( (end_time - start_time) / CLOCKS_PER_SEC)*1000);
return 0;
}
|
No comments:
Post a Comment